

Neuro-cognitive demands of foreign language communication in disaster situations

Andrea Révész, Hyeonjeong Jeong, Shungo Suzuki, Haining Cui, Shunsui Matsuura, Kazuya Saito, & Motoaki Sugiura

UCL

At a time of ...

international conflict

... international action and collaboration crucial

... cannot happen without people being able to communicate in a second language in crisis settings.

Joint statement (2020):

"During a global health crisis, researchers, governments, and health care workers must be able to share accurate information. In such times, language matters, and fluency in our languages matters. The people of the world must be able to speak to each other and be understood—to communicate as effectively and as rapidly as technology allows."

AMERICAN ACADEMY of arts & sciences

ACADEMY OF THE SOCIAL SCIENCES IN AUSTRALIA

It is important to invest in, maintain, and develop emergency communication mechanisms

Involves communicating in multiple languages

Recommendation from Word Health Organisation project to improve protocols for disaster communication (Medard-Davis & Kapus, 2014) :

Important to prepare for emergencies through simulation in a rapidly evolving high stress environment

Involves simulating communication in second/foreign languages

Despite the importance of being able to communicate in a second language in crisis situations, little research on second language communication in critical situations.

To promote the success of international communication in disaster situations,

it is essential to develop appropriate second language (L2) teaching methods, materials, and assessments.

Task-based language teaching appears promising to reach this objective

Task-based language teaching aims to prepare learners to carry out **genuine communicative tasks** aligned with their future academic, professional, and/or personal needs.

For disaster/crisis situations: prepare L2 learners to communicate in specific crisis situations

UC

In task-based language teaching, this is achieved by taking <u>task</u>, instead of linguistic units (grammar or vocabulary) as the main unit of language teaching.

Examples for tasks:

- Making a decision about vaccine allocation under pressure
- Communicating evacuation plans
- Deciding an emergency strategy as part of an international group
- Determining what actions to take in an international rescue team

Task-based language teaching aligned with notion of **transfer-appropriate processing** from cognitive psychology:

We can better transfer and "remember what we have learned if the cognitive processes that are active during learning are similar to those that are active during retrieval" (Lightbown, 2007, p. 27).

Implication for crisis settings:

learners need to practice using second language in crisis situations

Parallel to WHO project recommendation: important to prepare for emergencies through simulation in high stress environment

Growing amount of research on task-based language teaching, **but**

little known about the processes underlying task-based performance, let alone

> in crisis situations

using neuroimaging methods

Broad project aim: investigate the cortical mechanisms involved in oral production during decision-making tasks in crises.

Background: Speech production

Kormos (2006), Levelt et al. (1999)

End-clauses versus mid-clauses

Background: Speech production

De Jong (2016); Rizantseva (2001)

Background: Speech production

Kormos (2006), Levelt et al. (1999)

Specific aims

- Aim: to examine the neural correlates of silent pausing during crisis-related decision-making tasks
- Effects of first language versus second language
- Cognitive demands of disaster-related decision-making tasks

De Jong (2016); Rizantseva (2001)

Hypotheses: Language effects

De Jong (2016); Rizantseva (2001)

Hypotheses: Cognitive task demands

Hypotheses: Cognitive task demands

Methodology: Participants

- 26 Japanese learners of L2 English recruited, 20 in final dataset (6 excluded due to audio quality and head movement)
- University students

Task

- 1. Desert Island
- 2. Parachute
- 3. Earthquake
- 4. Vaccination
- 5. Flooding
- 6. Fire
- 7. Plane Crash
- 8. New Virus

8 monologic speaking tasks

Disaster-related decisionmaking tasks

FLOODING

You have just received a flooding alert! You need to leave by car. It takes three hours to drive to the emergency accommodation. Choose <u>four items</u> from the list to take with you. <u>Explain why you chose or did not choose each item</u>.

Laptop

Gasoline

Mobile phone

Medicine

VACCINATION

You work for a COVID-vaccination center. You have five vaccines left. You need to use these five vaccines by the end of the day. A snowstorm hit, so nobody can get to the center any longer. There is a bus stuck nearby with eight passengers. Choose <u>five passengers</u> to get the vaccinations. <u>Explain why you chose or did not choose each person</u>.

Task	Language		
1. Desert Island			
2. Parachute	1.2 English		
3. Earthquake	LZ ENGIISH		
4. Vaccination			
5. Flooding			
6. Fire	L1		
7. Plane Crash	Japanese		
8. New Virus			

8 monologic speaking tasks

Disaster-related decisionmaking tasks

Task	Language	Complexity	
1. Desert Island		Simple	
2. Parachute	L2 English	Simple	
3. Earthquake		Complay	
4. Vaccination		Complex	
5. Flooding		Cimple	
6. Fire	L1 Japanese	Simple	
7. Plane Crash		Complay	
8. New Virus		Complex	

- 8 monologic speaking tasks
- Disaster-related decisionmaking tasks

Task	Language Complexity		
1. Desert Island	L2 English	Simple	
2. Parachute		Simple	
3. Earthquake		Complex	
4. Vaccination		Complex	
5. Flooding	L1 Japanese	Circondo	
6. Fire		Simple	
7. Plane Crash		Complex	
8. New Virus		Complex	

	8	monol	ogic	spea	king	tasks
--	---	-------	------	------	------	-------

<u>ش</u>

- Disaster-related decisionmaking tasks
- Task, language, and task complexity counter-balanced across participants

Methodology: Procedures

- fMRI scanning: 3T MRI Philips achieva
- > MRI compatible noise cancelling microphone
- Repetition of scan time: 2 seconds

Methodology: Data analyses

- >160 performance transcribed and coded by one of the researchers using PRAAT (Boersma & Weenink, 2007)
 - >L2 English performance (4 tasks x 20 participants)
 - >L1 Japanese performance (4 tasks x 20 participants)

Behavioural results: Pause frequency

Mixed effects regression model: Sig interaction between language and pause location

Behavioural results: Pause length

Mixed effects regression model: Significant effect for pause location

fMRI results: Language effects

Region of interest analyses:

Interaction effect between language and pause location

L1/L2 end-clause pausing: greater activation in conceptualisation-related area (theory-of-mind area)

L2 end-clause pausing only: greater activation in conceptualisation-related area (concept retrieval)

fMRI results: Language effects

Region of interest analyses:

Interaction effect between language and pause location

Left triangular part of inferior frontal gyrus (BA45) Left opercular part of inferior frontal gyrus (BA44)

L2 mid-clause pausing: greater activation in language-related areas (sentence construction, vocabulary selection)

fMRI results: Task effects

L2 English

L1 Japanese

fMRI results: Task effects

L2 English

right precentral gyrus

left precentral gyrus

L2 (end-clause/mid-clause) pausing during more complex task: greater activation in language-related areas

Discussion

Why, additional activation in the L2?

 Probably retrieving semantic concepts in the L2 was more demanding than in L1 due to limited proficiency and experience in L2

Hypotheses: Language effects

De Jong (2016); Rizantseva (2001)

Hypotheses: Cognitive task demands

Hypotheses: Cognitive task demands

De Jong (2016); Rizantseva (2001)

Implications: Methodology

- One of the first studies to combine behavioural and brainimaging methods to study spontaneous speech production
- Neural data appeared more sensitive to detect processing differences (language and task effects) than behavioural speech production data

Implications: Preparing second language users to operate in crisis settings

- The neuroscience data: differences not only in language but also conceptualisation areas during second language and during more complex crisis-related tasks
- To decrease cognitive load on conceptualisation and thus increase preparedness, second language learners need to practice using second language in crisis situations they might face (e.g., natural disaster).
- Likely to induce better second language performance in terms of deciding what to say and how to say it in real-life crisis situations.

